繁体
玄幻 武侠 都市 历史 科幻 游戏 女生 其他
首页

第26节(3 / 3)

開啟AI情感朗讀功能。歡迎大家點擊體驗!

关于“角动量守恒定律”有一个易于理解的例子:溜冰运动员在冰面上翩翩旋转,双臂展开时速度悠然,而一旦身体蜷缩起来,旋转的速度就会加快。这一现象便是“角动量守恒定律”的写照。

按照这个定律,体积越小的行星,自转的速度就越快。当然,由于行星汇聚的物质千差万别,并不是非要一成不变地恪守这个定律不可,允许有例外,但是要有说得过去的理由。再者说,只要总体的趋势与这个定律大致吻合,我们也就无须多加解释。也就是说,抛开冥王星不谈,水星的自转速度最快,火星次之,金星和地球这一组位居其后,再往后是海王星和天王星这一对儿,木星和土星组合可以是最慢的。

然而事实却恰恰相反,个头最大的木星和土星,自转的速度最快。天王星和海王星这第二大的组合拥有第二快的自转速度。“角动量守恒定恶魔岛幻想曲第三章恶魔岛律”在现实中遭到了颠覆。

木星的大部分都是氢气和氦气的聚合体,时至今日没有人能够知道,在常年引发风暴的炽热的云层之下,它的地表是一番怎样的景象。我们可以想象出那上面几乎没有坚硬的地面,这就等于是说,它的准确赤道半径仍然是个未知数,同时也意味着,“角动量守恒定律”无法在这个地方适用。虽然这颗行星的引力极强,但是地核部分的大小可能还赶不上天王星。关于这一点,我们只能寄望于未来的研究成果。

总而言之,有一个方法最容易阐释为什么我们太阳系的各大行星的运动表现得与“角动量守恒定律”相悖,那就是将其归结于其他天体的撞击所带来的干扰。宇宙是动态变化的,可宇宙里面除了星星这种物质以外,就是无穷无尽的空间,此外再无他物。至少我们凭借当今的科学手段所能观察到的宇宙里的角色就是它们了。在这里,光的速度是恒定的,可以作为标尺,时间也是空间的一个侧面,它们无一例外地都要受到重力的影响。这就是二十世纪三十年代为止,身为万物灵长的地球上的最高级智慧生物所达到的对于宇宙的理解。

假如这种理解还算靠谱,那么从小行星碰撞中寻找,是何种根本性的原因导致在角动量守恒定律的支配下才出现的单纯的常规性运动演变到了今天这般地步,这种想法并非就是异想天开。

从这个思路考虑的话,我们似乎可以在某种程度上认为,大型的行星最为保守,它倾向于保留初始的运动状态,换言之,它最不易受到小行星碰撞的影响。

恶魔岛幻想曲第三章恶魔岛试想和地球差不多大小的金星这会儿冲着地球一头撞过来。如果撞击的角度很大,比如接近于正面相撞,地球大概就会粉身碎骨;可如果是以很小的角度撞在赤道附近,而且还和地球的自转的方向相反,那么地球肯定会停止自转,不仅如此,我们甚至可以想象,它还会开始朝着相反的方向旋转。但是,如果金星的撞击对象不是地球,而是体积相当于它一千倍的木星,无论这种撞击与其自转方向相反还是一致,金星都应该不会对木星造成什么影响的。它既不会阻止住木星的自转,或者逼得它反转,也不太可能加快或放慢它的自转速度。

我们至少可以说,木星一土星这一组